Echarts for R
Echarts:开源、画图、JavaScript、Web页面
R:开源
echarts4r的特点
- 语法简单、上手快
参考资料
Echarts官网:https://echarts.apache.org
echarts4r官网:https://echarts4r.john-coene.com
2021年11月20日
Echarts:开源、画图、JavaScript、Web页面
R:开源
Echarts官网:https://echarts.apache.org
echarts4r官网:https://echarts4r.john-coene.com
自适应;横轴;纵轴–多个指标、双Y轴、堆叠、转置、反向、分组、时间轴
标题、图例、数据标签(格式化文本、富文本)、提示框(格式化文本)、标注点、标注线、标注区域、数据区域缩放、工具栏、视觉映射、自定义图形、排列组合、连接、嵌套
直角坐标系、极坐标系、单轴、日历、地理坐标系、平行坐标系
选择主题;背景颜色;
线:坐标轴轴线、坐标轴刻度线、坐标轴分割线、数据标签的视觉引导线;
文字:坐标轴标题、坐标轴标签、图表标题、图例、数据标签、提示框
|>
换成%>%
library(echarts4r) data |> e_charts(month) |> #横轴 e_bar(Evaporation) #纵轴 e_charts(data, month) |> #横轴 e_bar(Evaporation) #纵轴
## month Evaporation ## 1 1月 2.0 ## 2 2月 4.9 ## 3 3月 7.0 ## 4 4月 23.2 ## 5 5月 25.6 ## 6 6月 76.7
library(echarts4r) data |> e_charts(month) |> #横轴 e_bar(Evaporation) #纵轴 e_charts(data, month) |> #横轴 e_bar(Evaporation) #纵轴
data |> e_charts(month) |> #横轴 e_bar(Evaporation) |> #纵轴 e_x_axis( axisLabel = list(interval = 0, rotate = 30), name = "X轴", #X轴的名字 formatter = '{value} 单位') #X轴标签的格式
data |> e_charts(month) |> #横轴 e_bar(Evaporation) |> #纵轴 e_y_axis( min = 0, #最小值 max = 200, #最大值 interval = 50, #间隔值 name = "Y轴", #轴名称 formatter = '{value} 单位' #轴标签 )
data |> e_charts(month) |> e_bar(Evaporation) |> e_bar(Precipitation) |> e_line(Temperature) |> e_y_axis( min = 0, max = 200, interval = 50, name = "Y轴", formatter = '{value} 单位')
data |> e_charts(month) |> e_bar(Evaporation) |> e_bar(Precipitation) |> e_line(Temperature, y_index = 1) |> e_y_axis( min = 0, max = 200, interval = 50, name = "主Y轴", formatter = '{value}ml') |> e_y_axis( index = 1, min = 0, max = 28, interval = 7, name = "副Y轴", formatter = '{value}°C')
data |> e_charts(month) |> e_bar(Evaporation, stack = "group1") |> e_bar(Precipitation, stack = "group1") |> e_y_axis( min = 0, max = 400, interval = 50, name = "Y轴", formatter = '{value} 单位')
data.new <- data |> dplyr::mutate( Evaporation_rate = round(Evaporation / (Evaporation + Precipitation), 2), Precipitation_rate = round(Precipitation / (Evaporation + Precipitation), 2)) data.new |> e_charts(month) |> #横轴 e_bar(Evaporation_rate, stack = "group1") |> #纵轴 e_bar(Precipitation_rate, stack = "group1") |> e_y_axis( max = 1, interval = 0.5, formatter = e_axis_formatter("percent", digits = 1)) |> e_tooltip(formatter = e_tooltip_item_formatter("percent"))
转置:交换横轴和纵轴
一般先按数值排序,也可按数据本身含义排序如人口金字塔
data.flip <- data[order(data$Evaporation), ] data.flip |> e_charts(month) |> e_bar(Evaporation) |> e_bar(Precipitation) |> e_flip_coords() #转置
data |> e_charts(month) |> e_bar(Evaporation) |> e_bar(Precipitation, x_index = 1, y_index = 1) |> e_y_axis(index = 0, min = 0, max = 200) |> e_y_axis( index = 1, inverse = TRUE, #反向 min = 0, max = 200)
data.inverse <- data |> dplyr::mutate(Evaporation_i = -Evaporation) data.inverse |> e_charts(month) |> e_bar(Precipitation, stack = "group1", name = "男") |> e_bar(Evaporation_i, stack = "group1", name = "女") |> e_y_axis(show = FALSE) |> e_flip_coords()
## type month Evaporation Precipitation Temperature ## 1 A区域 1月 2.0 2.6 2.0 ## 2 A区域 2月 4.9 5.9 2.2 ## 13 B区域 1月 2.6 2.0 2.0 ## 14 B区域 2月 5.9 4.9 2.2
data.ab |> group_by(type) |> e_charts(month) |> e_line(Evaporation) |> e_toolbox_feature(feature = "dataView") |> e_toolbox_feature(feature="dataZoom")
time
, value
, category
.data.ab |> group_by(type) |> e_charts(month, height=400, timeline = TRUE) |> e_bar(Evaporation, name = "蒸发量") |> e_bar(Precipitation, name = "降水量") |> e_timeline_opts(axis_type = "category", top = 5) |> e_legend(bottom = 'bottom', orient = 'horizontal') |> e_toolbox_feature(feature = "dataView")
## type month Evaporation Precipitation Temperature ## 1 A区域 1月 2.0 2.6 2.0 ## 2 A区域 2月 4.9 5.9 2.2 ## 13 B区域 1月 2.6 2.0 2.0 ## 14 B区域 2月 5.9 4.9 2.2
life.2 |> group_by(Year) |> e_charts(Income, timeline = TRUE) |> e_scatter( serie=Life_Expectancy,size = Population,bind = Country, itemStyle = list(opacity = 0.8),)|> e_timeline_opts( autoPlay = TRUE,orient = 'vertical',inverse = TRUE, right=0,top=20,bottom=20,width=55,symbol = 'none', checkpointStyle = list(borderWidth = 2), controlStyle = list(showNextBtn = FALSE, showPrevBtn = FALSE)) |> e_timeline_serie( title = list( list( text = '各国人均寿命与GDP关系演变', textStyle = list(fontWeight = 'normal', fontSize = 20), subtext = '1800', subtextStyle = list(fontWeight = 'bold', fontSize = 40)), list(text='各国人均寿命与GDP关系演变',subtext = '1840'), #省略部分 list(text='各国人均寿命与GDP关系演变',subtext = '2015')))
data |> e_charts(month) |> e_bar(Evaporation, name = "蒸发量") |> e_bar(Precipitation, name = "降水量") |> e_title("图表的主标题", "图表的副标题\n换行", left='center') |> e_legend(right = 'right', orient = 'vertical') #右边,竖着 #上方正中间,竖着 #e_legend(top = 'top', orient = 'vertical') #下方中间,横着 #e_legend(bottom = 'bottom', orient = 'horizontal') #不显示图例 e_legend(show = FALSE)
data |> e_charts(month) |> e_bar(Evaporation, name = "蒸发量") |> e_bar(Precipitation, name = "降水量") |> e_labels( fontSize = 9,#标签字体大小 fontWeight = "bold",#字体粗细normal/bold/bolder/lighter fontStyle = "normal", #字体风格normal/italic/oblique fontFamily = "serif", #字体 position = "top", #标签位置 rotate = 30, #旋转角度 align = "middle", #水平对齐:left/middle/right verticalAlign = "bottom", #垂直对齐:top/middle/bottom color = "orange") #标签颜色 #字体:'sans-serif','monospace','Arial','Microsoft YaHei' ... #'top'/'left'/'right'/'bottom' #'inside'/'insideLeft'/'insideRight' #'insideTop'/'insideBottom' #'insideTopLeft'/'insideBottomLeft' #'insideTopRight'/'insideBottomRight'
\n
换行data |> e_charts(month) |> e_bar(Evaporation, name = "蒸发量") |> e_labels(formatter='{@[1]}:a')
## type month Evaporation Precipitation Temperature ## 1 A区域 1月 2.0 2.6 2.0 ## 2 A区域 2月 4.9 5.9 2.2 ## 3 A区域 3月 7.0 9.0 3.3 ## 4 A区域 4月 23.2 26.4 4.5 ## 5 A区域 5月 25.6 28.7 6.3 ## 6 A区域 6月 76.7 70.7 10.2
df.outer |> e_chart(name) |> e_pie(value, radius = c("20%", "40%")) |> e_labels( position="outside", labelLine = list(length = 30), formatter = '{a|{a}}{abg|}\n{hr|}\n {b|{b}:}{c} {per|{d}%} ', backgroundColor = '#F6F8FC', borderColor = '#8C8D8E', borderWidth = 1, borderRadius = 4, rich = list( a = list( color = '#6E7079', lineHeight = 22, align ='center'), hr = list( borderColor = '#8C8D8E', width = '100%', borderWidth = 1, height = 0), b = list( color = '#4C5058', fontSize = 14, fontWeight = 'bold', lineHeight = 33), per = list( color = '#fff', backgroundColor = '#4C5058', padding = c (3, 4),borderRadius = 4)))|> e_toolbox_feature(feature = "dataView")|> e_legend(type = 'scroll', bottom = 'bottom')
e_tooltip(trigger = "item")
#数据项触发e_tooltip(trigger = "axis")
#坐标轴触发data.ab |> group_by(type) |> e_charts(Evaporation) |> e_scatter(Precipitation, symbol_size = 10, symbol = "circle") |> e_x_axis(name = "蒸发量") |> e_y_axis(name = "降水量") |> e_tooltip( trigger = "item", formatter = htmlwidgets::JS( "function(params){ return('指标:' + '<br />降水量: ' + params.value[0] + '<br />蒸发量: ' + params.value[1])}"))
data |> e_charts(month) |> e_bar(Evaporation, name = "蒸发量") |> e_bar(Precipitation, name = "降水量") |> e_mark_point("蒸发量", data = list(type = "min")) |> e_mark_point("蒸发量", data = list(type = "max")) |> e_mark_point("降水量", data = list(type = "min", symbol = "triangle")) |> e_mark_point("降水量", data = list(type = "max", symbolSize = 80)) # 'circle', 'rect', 'roundRect', 'triangle', # 'diamond', 'pin', 'arrow', 'none'
min
、max
、average
data |> e_charts(month) |> e_bar(Evaporation, name = "蒸发量") |> e_bar(Precipitation, name = "降水量") |> e_mark_line("蒸发量", data = list(type = "average")) |> e_mark_line("降水量", data = list(type = "average"), precision = 1) |> e_mark_line("蒸发量", data = list(type = "max")) |> e_tooltip(trigger = "axis")
data |> e_charts(month) |> e_bar(Evaporation, name = "蒸发量") |> e_bar(Precipitation, name = "降水量") |> e_mark_area( serie = "蒸发量", data = list(list(xAxis = "6月", yAxis = 100), list(xAxis = "9月", yAxis = 180)), itemStyle = list(color = "lightblue")) |> e_mark_area( serie = "降水量", data = list( list(xAxis = "min", yAxis = "min"), list(xAxis = "max", yAxis = "average")), itemStyle = list(color = "lightgreen")) |> e_tooltip(trigger = "axis")
group_by
情况下的标注点-线-区域## height weight type ## 1: 161.2 51.6 Female ## 2: 174.0 65.6 Male
hw|> group_by(type)|> e_charts(height )|> e_scatter(serie = weight,symbol_size = 10)|> e_mark_area( silent = TRUE, itemStyle = list( color = 'transparent', borderWidth = 1, borderType = 'dashed'), #serie = "Female", data = list( list(xAxis = "min", yAxis = "min"), list(xAxis = "max", yAxis = "max"))) |> e_mark_point(data = list(type = 'min')) |> e_mark_point(data = list(type = 'max')) |> e_mark_line(data = list(type = 'average'), lineStyle = list(type = 'solid')) |> e_mark_line(serie = 'Female', data = list(xAxis = 160)) |> e_mark_line(serie = 'Male', data = list(xAxis = 170))
data |> e_charts(month) |> e_line(Evaporation, name = "蒸发量") |> e_line(Precipitation, name = "降水量")|> e_datazoom(x_index = 0, start = 80, end = 100) |> e_datazoom(y_index = 0)
e_datazoom(y_index = 0, type = 'slider')
e_datazoom(y_index = 0, type = 'inside')
saveAsImage
、brush
、restore
、dataView
、dataZoom
、magicType
e_brush()
e_toolbox_feature(feature = "dataView")
iris |> e_charts(Sepal.Length) |> e_scatter(Petal.Length, Sepal.Width) |> e_visual_map(Sepal.Width, scale = e_scale, dimension=3) |> e_tooltip(trigger = "axis")
data |> e_charts(month) |> e_bar(Evaporation, name = "蒸发量") |> e_bar(Precipitation, name = "降水量") |> e_text_g( left = "center", top = 40, z = -1000, style = list(text = "自定义的文字\n自定义的文字\n自定义的文字", fontSize = 12)) # e_draft(text="水印") # e_image_g( # right = 20, # top = 20, # z = -999, # style = list( # image = "https://www.r-project.org/logo/Rlogo.png", # width = 150, # height = 150, # opacity = .6 ))
e1 <- data |> e_charts(month,height = 250) |> e_bar(Evaporation, name = "蒸发量") e2 <- data |> e_charts(month,height = 250) |> e_line(Precipitation, name = "降水量") liquid <- data.frame(val = c(0.6, 0.5, 0.4)) e3 <- liquid |> e_charts(height = 250) |> e_liquid(val) funnel <- data.frame(stage = c("View", "Click", "Purchase"), value = c(80, 30, 20)) e4 <- funnel |> e_charts(height = 250) |> e_funnel(value, stage) |> e_legend(show = FALSE) e_arrange(e1, e2, e3, e4, cols = 2, rows = 2)
e_connect
函数时需要在要连接的图中设定参数elementId
e1 <- data |> e_charts(month, height = 200 , elementId = "图1") |> e_bar(Evaporation, name = "蒸发量") e2 <- data |> e_charts(month, height = 200 , elementId = "图2") |> e_bar(Precipitation, name = "降水量") e3 <- data |> e_charts(month, height = 200) |> e_line(Temperature, name = "平均温度") |> e_connect(c("图1", "图2")) e_arrange(e1, e2, e3)
funnel <- data.frame( stage = c("View", "Click", "Purchase"), value = c(80, 30, 20), color = c("blue", "red", "green")) funnel |> dplyr::mutate(show = TRUE, fontSize = c(15, 10, 5)) |> e_charts() |> e_funnel(value, stage) |> e_add("label", show, fontSize) |> e_add("itemStyle", color) |> e_labels(position = "outside", formatter = "{b} : {c}") |> e_tooltip() #e_add_nested/e_add_unnested
data |> e_charts(month) |> e_line(Evaporation, name = "蒸发量") |> e_line(Precipitation, name = "降水量", x_index = 1, y_index = 1) |> e_grid(height = "35%") |> e_grid(height = "35%", top = "60%") |> e_y_axis( gridIndex = 1, name = "主Y轴", #坐标轴名称 nameLocation = "center", #坐标轴名称的位置 nameGap = 30) |> e_x_axis(gridIndex = 1, name = "主X轴", nameLocation = "end") |> e_y_axis( index = 1, name = '次Y轴', nameLocation = "center", nameGap = 15) |> #坐标轴名称与轴线之间的距离 e_x_axis(index = 1, name = "次X轴", nameLocation = "end")
data |> e_charts(month) |> e_line(Evaporation, name = "蒸发量") |> e_line(Precipitation, name = "降水量", x_index = 1 , y_index = 1) |> e_grid(width = "30%") |> e_grid(width = "30%", left = "50%") |> e_y_axis(gridIndex = 1) |> e_x_axis(gridIndex = 1)
e_angle_axis
为角度轴,即被折起来的轴,e_radius_axis
为径向(半径)轴data|> e_charts(month) |> e_polar() |> e_angle_axis(month) |> e_radius_axis() |> e_bar(Evaporation, name = "蒸发量", coord_system = "polar") |> e_line(Precipitation, name = "降水量", coord_system = "polar")
e_angle_axis
为角度轴,即被折起来的轴,e_radius_axis
为径向(半径)轴data |> e_charts(month) |> e_polar() |> e_angle_axis() |> e_radius_axis(month, axisLabel = list(interval = 0)) |> e_bar(Evaporation, name = "蒸发量", coord_system = "polar", stack = "堆一堆") |> e_bar( Precipitation, name = "降水量", coord_system = "polar", stack = "堆一堆")
data |> e_charts(month) |> e_radar(Evaporation, max = 200, #最大值 name = "蒸发量") |> e_radar(Precipitation, max = 200, #最大值 name = "降水量") |> e_radar_opts(splitNumber = 4, #指示器轴的分割段数 shape = "polygon", #类型,还可以是circle radius = "60%") |> #半径 e_tooltip(trigger = "item")
data |> e_charts(month, height=100) |> e_single_axis(bottom = 20) |> e_scatter(Evaporation, name = "蒸发量", Temperature, coord_system = "singleAxis") #e_scatter(value,size,coord_system = "singleAxis")
e1 <- data.2 |> #`height = 100`用来设置图形高度 e_charts(hours, height = 100) |> #横轴 #`bottom = 20`用来设置single组件距离容器下侧的距离 #`left=150`用来设置single组件距离容器左侧的距离 #`axisLabel=list(interval=2)`用来限定single组件单轴的显示间隔 e_single_axis(bottom = 20, left=100, axisLabel=list(interval=2)) |> e_scatter(Saturday_value, #纵轴 Saturday_size, #气泡大小 #写入JavaScript语言的缩放函数 scale_js = 'function (dataItem) {return dataItem[2] * 4;}', color = "#5470c6", #气泡颜色 coord_system = "singleAxis") |> e_legend(show = FALSE) |> e_title("Saturday", left = "left", top='middle') e_arrange(e1, e2, e3, e4, e5, cols = 1)
dates <- seq.Date(as.Date("2021-09-01"), as.Date("2021-10-31"), by = "day") values <- rnorm(length(dates), 20, 6) year <- data.frame(date = dates, values = values) #左图 year |> e_charts(date) |> e_calendar(range = "2021-09", orient = 'vertical') |> e_heatmap(values, coord_system = "calendar") |> e_visual_map(max = 30) #右图 year |> e_charts(date) |> e_calendar(range = c("2021-09", "2021-11"), orient = 'horizontal') |> e_heatmap(values, coord_system = "calendar") |> e_visual_map(max = 30)
# install.packages("remotes") # remotes::install_github('JohnCoene/echarts4r.maps') library(echarts4r.maps) df <- data.frame(region = c("湖北", "浙江", "北京", "广东"), value = c(1, 2, 3, 4)) df |> e_charts(region) |> em_map("China") |> e_map(value, map = "China") |> e_visual_map(value) |> e_theme("infographic")
# data("cities") # cc <- cities |> filter(country == "CN") lines |> e_charts() |> e_geo(map = "China") |> e_lines( source_lon, source_lat, target_lon, target_lat, source_name, target_name, cnt, coord_system = "geo", #地理坐标系 name = "线的名字", lineStyle = list(normal = list( curveness = 0.3, #线的弯曲度 color = "red", width = 2))) |> e_tooltip( trigger = "item", formatter = htmlwidgets::JS( "function(params){ return( params.seriesName +'<br />' + params.data.source_name + ' -> ' + params.data.target_name + ':'+ params.value)}"))|> e_toolbox_feature(feature = c("dataView", "saveAsImage"))
group_by(type)
没起作用parallel |> group_by(type) |> e_charts() |> e_parallel(date, AQIindex, PM25, PM10, CO, NO2, SO2 , level, opts = list(smooth = FALSE)) |> e_legend(show = TRUE)|> e_toolbox_feature(feature = "dataView")
symbol = c("none", "arrow")
表示只在轴线末端显示箭头,默认symbol=“none”即不显示箭头,symbol=“arrow”即两端都显示箭头symbolSize = c(20, 15)
箭头的大小,第一个数字表示宽度(垂直坐标轴方向),第二个数字表示高度(平行坐标轴方向)data |> e_charts(month) |> e_bar(Evaporation, name = "蒸发量") |> e_y_axis(name = "Y轴", axisLine = list( show = TRUE, # 显示坐标轴轴线 symbol = c("none", "arrow") , symbolSize = c(20, 15), lineStyle = list( color = "red", #轴线的颜色 width = 2, #轴线的线宽 type = "dashed", #solid实线,dashed虚线,dotted点线 opacity = 0.5))) #轴线的透明度
alignWithLabel = TRUE
使刻度线和标签对齐,在boundaryGap=true
的时候有效data |> e_charts(month) |> e_bar(Evaporation, name = "蒸发量") |> e_y_axis( name = "Y轴", axisLine = list(show = TRUE), axisTick = list( show = TRUE, #显示坐标轴刻度 inside = TRUE, #刻度朝内,默认朝外 length = 10, #刻度的长度 lineStyle = list( color = "red", #刻度线的颜色 width = 5, #刻度线的线宽 type = "solid", #刻度线的类型 opacity = 0.5 #刻度线的透明度 ))) |> e_x_axis(boundaryGap = TRUE, axisTick = list(alignWithLabel = TRUE))
data |> e_charts(month) |> e_bar(Evaporation, name = "蒸发量") |> e_bar(Precipitation, name = "降水量") |> e_y_axis( name = "Y轴", axisLine = list(show = TRUE), splitLine = list( show = TRUE, #显示坐标轴分割线 lineStyle = list( color = "red", #分割线的颜色 width = 2, #分割线的线宽 type = "dashed", #分割线的类型 opacity = 0.5 #分割线的透明度 ))) |> e_x_axis( splitLine = list( show = TRUE, #显示坐标轴分割线 interval = 1, #坐标轴分隔线的显示间隔 lineStyle = list( color = "red", #分割线的颜色 width = 2, #分割线的线宽 type = "dashed", #分割线的类型 opacity = 0.5))) #分割线的透明度
maxSurfaceAngle
设置为小于 90 度的值保证引导线不会和扇区交叉。labelLine()
通过设置lineStyle=list()
改变引导线的颜色、线宽、类型、透明度等等属性。data |> e_charts(month) |> e_pie(Evaporation, name = "蒸发量", radius = "40%") |> e_labels( position = "outside", #显示视觉引导线 fontSize = 9, alignTo = "edge", formatter = "名称:{b} \n 值:{c} 单位", minMargin = 5, edgeDistance = 10, #文字边距 lineHeight = 15, #行高 distanceToLabelLine = 5, #文字与引导线之间的距离 labelLine = list( length = 20, #引导线第一段的长度 length2 = 0, #引导线第二段的长度 maxSurfaceAngle = 80)) |> e_legend(type = "scroll")
data |> e_charts(month, height = 400) |> e_bar(Evaporation, name = "蒸发量") |> e_line(Precipitation, name = "降水量", color="red") |> e_x_axis( name = "X轴的名称", nameLocation="center", nameTextStyle = list(color = "red"), #修改坐标轴标题的文字属性 axisLabel = list(color = "orange")) |> #修改坐标轴标签的文字属性 e_y_axis( name = "Y轴的名称", nameTextStyle = list(color = "red"), #修改坐标轴标题的文字属性 axisLabel = list(color = "orange")) |> #修改坐标轴标签的文字属性 e_title(text = "主标题", textStyle = list(color = "lightblue")) |> #修改图表标题的文字属性 e_legend( textStyle = list(color = "lightgreen"), #修改图例的文字属性 itemStyle = list(color = "grey"), #修改图例的图形属性 lineStyle = list(color = "red"))|> #修改图例的图形中线的属性 e_labels(show = TRUE, position = "top", color = "green") |> #修改数据标签的文字属性 e_tooltip(show = TRUE, trigger = "axis", textStyle = list(color = "pink")) #修改提示框中的文字属性
data |> e_charts(month, height = 400) |> e_bar(Evaporation, name = "蒸发量") |> e_x_axis( name = "X轴\n的名称", #支持`\n`换行 nameLocation = "center", nameGap = 45, nameTextStyle = list( color = "red", #颜色 fontStyle = "normal", #字体风格,还有italic/oblique fontWeight = "bolder", #字体粗细,还有normal/bold/lighter fontFamily = "Microsoft YaHei", #字体系列 fontSize = 12, #字体大小 align = "center", #字体水平对齐方式,还有left/right verticalAlign = "middle", #字体垂直对齐方式,还有top/bottom lineHeight = 20, #字体行高,默认56 backgroundColor = "grey", #字块背景颜色 borderColor = "blue", #文字块边框颜色 borderWidth = 2, #文字块边框宽度 borderType = "dashed" #文字块边框描边类型 ))
data |> e_charts(month, height = 400) |> e_bar(Evaporation, name = "蒸发量") |> e_x_axis( name = "X轴的名称", nameLocation = "center", nameGap = 45, nameTextStyle = list( backgroundColor = "lightgrey", #字块背景颜色 borderRadius = 20, #文字块的圆角 padding = c(1, 2, 3, 6), #文字块的内边距,(上,右,下,左) shadowColor = "red", #文字块背景阴影颜色 shadowBlur = 2, #文字块背景阴影长度 shadowOffsetX = 1, #文字块背景阴影X偏移 shadowOffsetY = 1, #文字块背景阴影Y偏移 width = 20, #文字本身的显示宽度 height = 10, #文字本身的显示高度 textBorderColor = "blue", #文字本身的描边颜色 textBorderWidth = 0.2, #文字本身的描边宽度 textBorderType = "solid", #文字本身的描边类型 textBorderDahOffset = 0)) #文字本身虚线描边时的偏移量 #textShadowColor文字本身的阴影颜色/textShadowBlur文字本身的阴影长度 #testShadowOffsetX文字本身的阴影X偏移/testShadowOffsetY文字本身的阴影Y偏移 #文字超出宽度是否截断或换行:overflow https://echarts.apache.org/zh/option.html#xAxis.nameTextStyle.overflow
e_charts(data, month) |> e_bar(Evaporation, name = "蒸发量") |> e_bar(Precipitation, name = "降水量") |> e_line(Temperature, name = "平均温度", y_index = 1) |> e_x_axis(axisLabel = list(interval = 0))|> e_y_axis( min = 0, max = 250, interval = 50, name = "水量", formatter = '{value} ml', axisLine = list(show = TRUE), axisTick = list(show = TRUE, inside = TRUE)) |> e_y_axis( index = 1, min = 0, max = 25, interval = 5, name = "温度", formatter = '{value} °C') |> e_title('图表的主标题') |> e_tooltip(trigger = "axis") |> e_legend(bottom = 'bottom', orient = 'horizontal') |> e_labels(fontSize = 9, position = "top") |> e_datazoom(y_index = 1, type = "inside") |> e_mark_point("平均温度", data = list(type = "min")) |> e_mark_point("平均温度", data = list(type = "max")) |> e_mark_line("平均温度", data = list(type = "average")) |> e_mark_area( serie = "蒸发量", data = list(list(xAxis = "6月", yAxis = 100), list(xAxis = "9月", yAxis = 180)), itemStyle = list(color = "lightblue")) |> e_toolbox_feature(feature = c("dataView", "brush"))
xAxis: [ { type: 'category', axisTick: { show: false }, nameTextStyle: { padding: [3, 4, 5, 6] } } ] visualMap: [ { show: false, dimension: 3, categories: data.counties, inRange: { color: (function () { // prettier-ignore var colors = ['#51689b', '#ce5c5c']; return colors.concat(colors); })() } } ]
e_x_axis( type = "category", axisTick = list(show = TRUE), nameTextStyle = list( padding = c(1, 1, 5, 6) ) ) e_visual_map( show = FALSE, dimension = 3, categories = c( 'Australia','Canada','China','Cuba','Finland','France', ··· 'United States'), inRange = list( color = htmlwidgets::JS( "(function () { // prettier-ignore var colors = ['#51689b', '#ce5c5c']; return colors.concat(colors); })()" ) ))